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Dynamics of free-standing smectic-A films
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The eigenvibrations and time-dependent layer displacement-layer displacement correlation functions are
analyzed in a free-standing thin smectic-A films with the help of a discrete layer model. The film motions are
described using the Chebyshev polynomials of second kind,Un(x). The eigenfrequencies problem is essen-
tially simplified within the framework of this approach since the numerical solution of the high degree alge-
braic characteristic equation is replaced by the analytical solution of a rather simple trigonometrical equation.
The dependences of eigenmodes on wave numberq' were analyzed. For smallq' one mode is a low
frequency acoustic wave and other modes are high frequency optical oscillations. As the wave numberq'

increases all modes successively turn into relaxation when starting with the acoustic mode. The rather simple
expression for susceptibility matrix and for spectral densities of layer displacement correlation functions were
obtained using the Chebyshev polynomials. It was shown that the frequency dependences of spectral densities
are sensitive to wave numberq' . For smallq' the spectral densities of displacement-displacement correlation
functions have a sharp peak and for largeq' they turn into a contours of Lorentzian type.
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I. INTRODUCTION

In recent years considerable interest has been aime
studying free-suspended smectic-A ~Sm-A! films both theo-
retically and experimentally@1–13#. There are the continua
and discrete approaches for the theoretical description
static and dynamic properties of Sm-A films. In the first
model Sm-A films are considered as a continuous me
@4–6,10–12#. This description is suitable for specimens wi
thickness much greater than the interlayer distance. The
crete model@1–3,7,8# is effectively used for films containing
a few layers. Within the framework of this model it wa
possible to construct the equations of motion, to calculate
spatial correlation function of layer displacements, to d
scribe the x-ray scattering, to estimate the relaxation time
the layer motions, etc.

Smectic-A films have been successfully investigated
light scattering @14# and x-ray scattering experimen
@6,7,9,13#. The equilibrium structure of free-standing film
have been studied in@6#. Recently the dynamic properties o
films were investigated by coherent soft-x-ray@7,9# and
hard-x-ray @13# dynamic scattering. For the description
experiments it is necessary to know the time-dependent l
displacement-layer displacement correlation functions.

The solution of most problems related to characteris
frequencies and displacement–displacement correla
functions of Sm-A films require cumbersome numerical ca
culations. This is associated with the absence of conven
methods for determination of eigenfrequencies and eig
modes of Sm-A films. In discrete approach the central pro
lem is associated with the necessity of a definition of sy
metric N3N matrix eigenvalues where N is the number
smectic layers.

On the other hand Sm-A films possess one-dimension
periodic structure. For the analysis of dynamic properties
1063-651X/2001/63~3!/031706~11!/$15.00 63 0317
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such systems the approach based on the Chebyshev po
mials of the second kindUn(x) was successfully used@15#.
In the present work this approach is applied for descript
of Sm-A films. It enables one to get the analytical solutio
of the most interesting problems and also to simplify t
procedure of numerical computations significantly. We c
culate the characteristic frequencies of the N-layer sys
and describe the motions of separate layers. The spe
densities of displacement–displacement correlation functi
are calculated using the fluctuation–dissipation theorem.
rather simple expressions were obtained for the tim
dependent correlation function of layer displacements.

The work is organized as follows. In Sec. II within th
framework of the discrete model for freely suspended fi
the set of equations of motion is presented and the cha
teristic equation is expressed through the Chebyshev poly
mials. Section III is devoted to the solution of the charact
istic equation and to the analysis of eigenfrequencies
relaxation times. In Sec. IV the static and dynam
displacement–displacement correlation functions are ca
lated. In Sec. V the results obtained are discussed.

II. EQUATIONS OF MOTION

We consider the freely suspended film of Sm-A liquid
crystal consisting ofN layers. Its motion can be describe
within the framework of the discrete model suggested
Refs.@1–3,7,8#. In this model it is supposed that in an equ
librium state the smectic layers are equidistant planes s
rated by the distanced. We introduce the Cartesian coord
nate frame so that thexy plane coincides with the
equilibrium position of the first layer; the film is located i
the regionz>0.

We use the notationun(r' ,t) for displacement of thenth
smectic layer in thez direction in the @r' ,z5(n21)d#
©2001 The American Physical Society06-1
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point. The contribution to the free energy of a film caused
inhomogeneous displacements of layers has the form

F5 1
2 E dr'H B

d (
n51

N21

~un112un!21dK (
n51

N21

~D'un!2

1g@~¹'u1!21~¹'uN!2#J , ~2.1!

where B and K are the layer compression and layer be
elastic constant andg is the surface tension. We consid
that the coefficientK is the same for the surface and intrins
layers. The force acting on thenth layer consists of elastic
2d21(dF/dun), and viscous,h3D'(]un /]t), contributions,
whereh3 is the layer sliding viscosity.

We assume the external forces to be equal to zero in s
ies of characteristic oscillations. In linear approximation t
set of equations of motion has the form:

r
]2u1~r' ,t !

]t2
5B

u2~r' ,t !2u1~r' ,t !

d2
2KD'

2 u1~r' ,t !

1
g

d
D'u1~r' ,t !1h3D'

]u1~r' ,t !

]t
,

r
]2un~r' ,t !

]t2
5B

un11~r' ,t !22un~r' ,t !1un21~r' ,t !

d2

2KD'
2 un~r' ,t !1h3D'

]un~r' ,t !

]t
,

n52,3, . . . ,N21, ~2.2!

r
]2uN~r' ,t !

]t2
5B

uN21~r' ,t !2uN~r' ,t !

d2
2KD'

2 uN~r' ,t !

1
g

d
D'uN~r' ,t !1h3D'

]uN~r' ,t !

]t
.

We represent the solution of the problem as a plane wav

un~q' ,v!eiq'•r'2 ivt.

Then the set of equations of motion turns into a system
linear algebraic equations with respect to the compone
u1(q' ,v), . . . ,uN(q' ,v). In what follows the arguments
q' ,v in these components are omitted. So, we have

S rv21 ivh3q'
2 2

B

d2
2Kq'

4 2
g

d
q'

2 D u11
B

d2
u250,

S rv21 ivh3q'
2 22

B

d2
2Kq'

4 D un1
B

d2
un211

B

d2
un11

~2.3!
50, n52,3, . . . ,N21,
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S rv21 ivh3q'
2 2

B

d2
2Kq'

4 2
g

d
q'

2 D uN1
B

d2
uN2150.

Equating to zero the determinant of this system we get
equation for determination of eigenfrequencies of Sm-A film.

Within the aim of obtaining an analytical solution of Eq
~2.3! it is convenient to rewrite this set of equations in t
matrix form

Âu50, ~2.4!

where the column-vectoru and tridiagonal symmetric matrix
Â are

u5S u1

u2

A

uN

D ,

Â5S ~2x112a! 1 0 . . . 0 0 0

1 2x 1 . . . 0 0 0

0 1 2x . . . 0 0 0

A A A � A A A

0 0 0 . . . 2x 1 0

0 0 0 . . . 1 2x 1

0 0 0 . . . 0 1 ~2x112a!

D .

~2.5!

Here we introduced the notations:

x5211
d2

2B
~rv21 ivh3q'

2 2Kq'
4 !,

~2.6!

a5
dgq'

2

B
.

In order to solve the characteristic equation detÂ50 it is
convenient to represent the determinant of theÂ matrix in
form:

detÂ5UN~x!12~12a!UN21~x!1~12a!2UN22~x!,
~2.7!

where the following notation for tridiagonal determinant
the nth order is introduced:

Un~x!5U2x 1 0 . . . 0 0 0

1 2x 1 . . . 0 0 0

0 1 2x . . . 0 0 0

A A A � A A A

0 0 0 . . . 2x 1 0

0 0 0 . . . 1 2x 1

0 0 0 . . . 0 1 2x

U . ~2.8!
6-2
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The following properties of this determinant are valid:

U1~x!52x, U2~x!54x221, Un~x!22xUn21~x!

1Un22~x!50. ~2.9!

These equalities are the recursion relations for the Che
shev polynomials of the second kindUn(x) @16,17#. Bril-
louin and Parodi@15# have successfully used Eq.~2.8! for the
description of oscillations in one-dimensional periodic stru
tures. NoteUn(x)5Cn

1(x), whereCn
n(x) is the Gegenbaue

polynomial @16,17#.
Using the recursion relation~2.9! the characteristic equa

tion detÂ50 can be written as an equation with respect tox:

@x112a#UN21~x!2aS 12
a

2 DUN22~x!50. ~2.10!

Its left-hand side is the polynomial of thenth power and
generally Eq.~2.10! hasn solutions. The characteristic fre
quencies are calculated from the quadratic equation~2.6!
with respect tov. Its solutions

v6
( l )52 i

h3q'
2

2r
6A2B

rd2
~11x( l )!1

Kq'
4

r
2

h3
2q'

4

4r2
,

l 51,2, . . . ,N ~2.11!

correspond to each rootx( l ) of Eq. ~2.10!.
The problem of obtaining eigenfrequencies reduces to

solution of Eq. ~2.10!. These solutions depend on thea
5dgq'

2 /B parameter. For 0<a<2 all solutions of this
equation are in the interval21<x<1. If the a parameter is
in the interval 2,a,212/(N21) thenN21 solutions are
in the region21<x<1 and one solution is in the regionx
.1. For a.212/(N21) there areN22 solutions in the
interval21<x<1 and two solutions are more than the un
and fora@1 these two solutions coincide.

It is convenient to use the trigonometric representation
the Chebyshev polynomials to get the solution in the inter
21<x<1 @15–17#

x5cosu, Un~cosu!5
sin@~n11!u#

sinu
. ~2.12!

Then Eq.~2.10! has the form

~12a1cosu!
sin~Nu!

sinu
5aS 12

a

2 D sin@~N21!u#

sinu
,

~2.13!

where 0<u<p.
In the interval uxu.1 the substitutionx5coshu can be

used. Then the Chebyshev polynomials are@15#

Un~coshu!5
sinh@~n11!u#

sinhu
. ~2.14!
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Now we can obtain the solution of the set of equatio
~2.4!. For the l th root of the characteristic equation~2.10!
this set of equations can be written as

2x( l )S u1

u2

u3

A

uN21

uN

D 1S u2

u3

u4

A

uN

0

D 1S 0

u1

u2

A

uN22

uN21

D 1~12a!S u1

0

0

A

0

uN

D 50.

~2.15!

If we assume the amplitude of displacement of the first la
to beu151 then from Eq.~2.15! we obtain the displacemen
amplitudes of all layers sequentially. The solution of E
~2.15! has the form:

un
( l )~q'!5~21!n21@Un21~x( l )!1~12a!Un22~x( l )!#,

n,l 51,2, . . . ,N. ~2.16!

Here we formally assumed thatU21(x)50.
The displacement of thenth layer of a film can be written

as

un~r' ,t !5ReE dq'

~2p!2
eiq'•r'(

l 51

N

@a1
( l )~q'!e2 iv1

( l )t

1a2
( l )~q'!e2 iv2

( l )t#un
( l )~q'!, ~2.17!

n51,2, . . . ,N,

wherea6
( l )(q') are the complex amplitudes of eigenmode

III. SPECTRUM OF FUNDAMENTAL FREQUENCIES

The characteristic equation detÂ50 is an algebraic equa
tion of 2N power with respect tov. Its roots are eigenfre-
quencies of the Sm-A film. We reduce the problem of obtain
ing them to the solution of the system of Eqs.~2.6! and
~2.10!. Equation~2.6! is a quadratic one with respect tov
and a linear one with respect tox. Equation~2.10! contains
the variablex only. This equation can be transformed to
rather simple trigonometric equation~2.13! with the help of a
change of variables given by Eq.~2.12!. This approach es-
sentially simplifies the eigenfrequencies problem.

First, we obtain the auxiliary variablex from Eq. ~2.10!.
This equation can be solved exactly fora equal to 0, 1, 2,
anda→`. For a50 the solutions of this equation are

x( l )52cos
~ l 21!p

N
, l 51,2, . . . ,N. ~3.1!

For a51 we obtain

x( l )52cos
lp

N11
, l 51,2, . . . ,N. ~3.2!
6-3
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If a52, then

x( l )52cos
lp

N
, l 51,2, . . . ,N. ~3.3!

For a→` two solutions of Eq.~2.10! turn into infinity and
for the remaining roots we have

x( l )52cos
lp

N21
, l 51,2, . . . ,N22. ~3.4!

If a!1 then Eq.~2.10! can be solved by iteration. In
linear approximation overa we have

~x11!UN21~x!5a@UN21~x!1UN22~x!#.

This equation may be solved by using the substitutionx
5cosu. As a result we have

x(1)5211
a

N
, x( l )52cos

~ l 21!p

N

12
a

N
cos2

~ l 21!p

2N
, l 52,3, . . . ,N. ~3.5!

For a@1 it is convenient to introduce a small parame
e5a21. Then Eq.~2.10! reduces to

UN22~x!52e@UN21~x!1UN22~x!#22e2~x11!UN21~x!.

From this equation we obtain

x( l )52cos
lp

N21
2

2

a~N21!
sin2

lp

N21
, l 51,2, . . . ,N22.

~3.6!

The remaining two roots in the given approximation coinc
and are equal to

x(N21)5x(N)5
a

2
. ~3.7!

Note that the solutions~3.6! and ~3.7! can be used for nu
merical estimates even for not too largea. So fora52 and
N.15 the relative error for the value 11x( l ) entering Eq.
~2.11! does not exceed 5% for any mode.

If we use the typical parameters of Sm-A liquid crystal:
B;2.53107 dyn/cm2, g;30 dyn/cm, d;331027 cm,
then the condition a!1 results to inequality q'

!106 cm21. This range of wave numbers is studied
methods of excitation of mechanical oscillations@18# and
light scattering experiments. The conditiona@1 corre-
sponds to the wave numbersq'@106 cm21 which are stud-
ied by methods of dynamic x-ray scattering.

Now we analyze the behavior of eigenfrequencies by
creasing the wave number. For each value of the auxil
variablex( l ) two eigenfrequenciesv6

( l ) are obtained from Eq
~2.11!. We consider the casesa!1 anda@1 separately.
03170
r

-
ry

A. a™1, i.e.,q�™ABÕgd

~1! For very long waves,

q'
2 !

8gr

h3
2dN

, ~3.8!

all modes are oscillations with the following set of eigenfr
quencies

v6
(1)56c(1)q'2 iv9, ~3.9!

v6
( l )56

c( l )

d
2 iv9, l 52,3, . . . ,N,

where

c(1)5A 2g

rdN
,

c( l )52AB

r
sin

~ l 21!p

2N
, l 52,3, . . . ,N, ~3.10!

v95
h3q'

2

2r
.

The low-frequency oscillating modev6
(1) was obtained in

@3#. The expression for velocityc(1) has been shown to b
consistent with the experimental data. This mode descr
the film motion caused by the surface tension. Interlayer d
tances are constant in this motion. The other eigenfrequ
ciesv6

( l ) , l 52,3, . . . ,N, are generated by the elastic forc
arising from the variation of the interlayer distances. F
these modes the eigenfrequencies are independent o
wave number.

~2! In the region of wave numbers

8gr

h3
2dN

,q'
2 ,

2pABr

h3dN
~3.11!

the low-frequency mode turn into a relaxation one

t6
(1)52

i

v6
(1)

.

If q'
2 @8gr/h3

2dN, than the slow relaxation time is equal t

t1
(1)5

h3Nd

2g
. ~3.12!

This expression coincides with one obtained in@7,12#. For
the relaxation timet2

(1) , the inequalityt2
(1)!t1

(1) is valid.
The remaining modes,v6

( l ) , l 52,3, . . . ,N, remain oscillat-
ing as well as for the previous interval of the wave numbe

In the interval

2pABr

h3dN
,q'

2 ,
4ABr

h3d
6-4
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the oscillating modes convert into relaxation ones in turn
~3! In the region

4ABr

h3d
,q'

2 !
B

gd
~3.13!

all modes are relaxation
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t6
( l )52

i

v6
( l )

, l 51,2, . . . ,N.

The relaxation times can be calculated from Eqs.~2.11! and
~3.5!

t1
(1)5

h3

~2g/dN!1Kq'
2

, ~3.14!
t1
( l )5

h3q'
2

~4B/d2!„sin2@~ l 21!p/2N#1~dgq'
2 /NB!cos2@~ l 21!p/2N#…1Kq'

4
, l 52,3, . . . ,N.

B. aš1, i.e.,„q�šABÕgd…

In this region the eigenmodes decay with relaxation times

t1
( l )5

h3q'
2

~4B/d2!„sin2@ lp/2~N21!#2@B/~N21!dgq'
2 #sin2@ lp/~N21!#…1Kq'

4
, l 51,2, . . . ,N22,

~3.15!

t1
(N21)5t1

(N)5
h3q'

2

~gq'
2 /d!1~2B/d2!1Kq'

4
.

-

For every mode we present the larger of the two rel
ation times. It is not difficult to calculatet2

( l ) from Eq.~2.11!.
To illustrate the obtained results we consider the mot

of a six layer film. For various modes the layer motions a
shown in Fig. 1. The calculations were provided by E
~2.16! and ~3.5! with the typical parameters of Sm-A: K
;1026 dyn, h3;1 Pz, r;1 g/cm3. The calculations are
provided for wave numbersq'<105 cm21 which corre-
spond to the light scattering or mechanical oscillation pr
lems. As is seen from Fig. 1 the layers equally spaced fr
the surfaces move either in phase or in opposite phase.
result is consistent with the prediction of Ref.@7# for a dis-
crete model and Refs.@10–12# for a continual model. As the
wave numberq' increases the character of motions vari
As it follows from Eqs.~2.16! and ~3.6! for q'>107 cm21

the surface layers of the film are practically immobile a
two modes disappear in the spectrum.

The dependences of the real and imaginary parts of
eigenfrequencies onq' for the small values ofq' are shown
in Fig. 2. The calculations were provided by Eqs.~2.11! and
~3.5!. As is seen the first mode is acoustic and the remain
modes are optic withvÞ0 for q'50. As is evident from
Fig. 1 the center of gravity displaces in the first mode on
For the smallq' this mode is the transverse sound wave w
the sound velocity depending on the surface tension and
mass per the unit of the film surface. For the largeq' all
eigenmodes are relaxation with the characteristic tim
shown in Fig. 3. Every mode decays with two sharply d
fered relaxation times. According to Eq.~2.11! these times
have the form
-

n
e
.

-
m
his

.

e

g

.

he

s

FIG. 1. Types of eigenmodes of six layer free-standing SmA
film. ( l 51), acoustical mode; (l 52,3, . . . ,6),optical modes.
6-5
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t6
( l )5

2r

h3q'
2

3F17A12S 2r

h3q'
2 D 2S 2B

rd2
~11x( l )!1

Kq'
4

r D G21

,

l 51,2, . . . ,N, ~3.16!

wherex( l ) is given by Eq.~3.5!. With the increase ofq' the
time t1

(1) tends to the constant value given by Eq.~3.12!,
which is valid up toq';AB/gd. For largerq' the relax-
ation timest1

( l ) are plotted in Fig. 4. The calculations we
provided by Eqs.~3.6!, ~3.7!, and~3.16!. The dependences o
t1

( l ) on q' essentially coincide with the ones obtained in R
@7# by numerical calculations.

The dynamic characteristics of Sm-A films have been
studied in recent coherent x-ray scattering experime
@7,9,13#. This scattering is caused by the thermally driv

FIG. 2. Dependences of the real part and absolute value o
imaginary part of eigenfrequencies on the wave number for
layer Sm-A film. ~a! acoustical mode;~b! optical modes. Solid lines
correspond to the real parts and point lines are the imaginary p

The dimensionless frequencyv̄5vdAr/B and dimensionless wav

numberq̄5q'Adg/B are used.
03170
.

ts

layer fluctuations. The intensity–intensity time correlati
functions were recorded and the decay times were obta
for various films. The dynamic properties of the thick Sm
films (N;1032104) have been studied by the soft-x-ra
photon correlation spectroscopy@7,9#. In these experiments
x-ray scattering was mainly caused by the layer displacem
fluctuations with q';23103 cm21 (l;35 mm). For
these values ofq' according to Eq.~3.12! the largest relax-
ation timet1

(1) is independent ofq' and grows linearly with
the film thickness. This effect was observed in Refs.@7,9#.

The thin films withN595 @13# were studied by the co
herent dynamic hard-x-ray scattering experiment. The os
lation exponential decay of the intensity–intensity tempo
correlation function has been observed. This experiment i
qualitative agreement with Eq.~3.9! which predicts the os-
cillating character of motion in thin films.

It should be pointed out that according to Eq.~3.11! there
is a marginal value

he
ix

ts.

FIG. 3. The appearance in turn of two branches of relaxat
times in six layer Sm-A film. The branch points appear when re
evant real parts of the eigenfrequencies vanish. Upper and lo
solid lines correspond tot1

( l ) andt2
( l ) , respectively. The point line

corresponds to the absolute value of the inverse imaginary pa

eigenfrequency. Heret̄5t(AKB/h3d) is dimensionless time. The

dimensionless wave numberq̄ is defined in the caption of Fig. 2.
6-6
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q' c;A 8gr

h3
2Nd

which separates the oscillating and relaxational regimes
the acoustic mode. This value increases with the decrea
of the film thickness. Therefore for the fixedq' layer dis-
placements may be oscillating or relaxational depending
the film thickness.

IV. THERMAL FLUCTUATIONS

The spectral densities of the Sm-A film thermal fluctua-
tions can be found using the fluctuation-dissipation theor
~FDT! @19#. For this purpose we include into the free ener
the termFext connected with the external forcesf n(r' ,t) of
the pressure dimensionality acting on every layer. This te
has the form

Fext52E dr' (
n51

N

un~r' ,t ! f n~r' ,t !. ~4.1!

FIG. 4. The dependences of dimensionless relaxation timest1
( l )

on the dimensionless wave number for six layer Sm-A film. T
dimensionless variables are defined in the captions of Figs. 2 an
03170
or
ng

n

m

m

The elastic forces will contain an additional contribution
2(dFext/dun)5 f n . To use FDT the susceptibility matrixx̂
determined by the relationu5x̂f had to be calculated. The
equations of motion~2.3! containing the external forces i
Fourier representation have the form

S rv21 ivh3q'
2 2

B

d2
2Kq'

4 2
g

d
q'

2 D u11
B

d2
u252

1

d
f 1 ,

S rv21 ivh3q'
2 2

2B

d2
2Kq'

4 D un1
B

d2
un211

B

d2
un11

52
1

d
f n , n52,3, . . . ,N21, ~4.2!

S rv21 ivh3q'
2 2

B

d2
2Kq'

4 2
g

d
q'

2 D uN1
B

d2
uN2152

1

d
f N .

This system may be presented in the matrix form

Âu52
d

B
f, ~4.3!

where the matrixÂ is determined by Eqs.~2.5! and ~2.6!.
Since

x̂52
d

B
Â21

the determination of the susceptibility matrix requires t
calculation of the inverse matrixÂ21. The matrix elements
(Â21)nm may be obtained with the help of the relation

~Â21!nm5
1

detÂ
Amn , m,n51,2, . . . ,N, ~4.4!

thereAmn is the cofactor of the matrix element (Â)mn and the
determinant detÂ is given by Eq.~2.7!. Thus the elements o
the susceptibility matrix are

3.
xnm5xmn5~21!n1m11
d

B

@Um21~x!1~12a!Um22~x!#@UN2n~x!1~12a!UN2n21~x!#

UN~x!12~12a!UN21~x!1~12a!2UN22~x!
, ~4.5!

where

m,n51,2, . . . ,N; n>m,

and thex value is given by Eq.~2.6!.
The spectral densities of the layer displacement correlation functions are determined by the equality:

@un~q'!um~2q'!#v5E
2`

`

^un~q' ,t !um~2q',0!&eivtdt, ~4.6!

where the statistical averaging is provided over all layer displacements at timet50. Using the FDT we get
6-7
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@un~q'!um~2q'!#v5 i
kBT

v
@xmn* ~q' ,v!2xnm~q' ,v!#. ~4.7!

For the static case the fluctuations of the layer displacements^un
2(r')& and correlation functionŝun(r')um(0)& may be

expressed via the Chebyshev polynomials too. Using the Fourier transformation with respect to ther' variable we represen
the free energy, Eq.~2.1!, in the form,@2#:

F5
1

2E dq'

~2p!2 (
n,m51

N

un~q'!Mnmum~2q'!, ~4.8!

where the symmetric tridiagonal matrixM̂ is equal to

M̂52
B

d S ~2y112a! 1 0 . . . 0 0 0

1 2y 1 . . . 0 0 0

0 1 2y . . . 0 0 0

A A A � A A A

0 0 0 . . . 2y 1 0

0 0 0 . . . 1 2y 1

0 0 0 . . . 0 1 ~2y112a!

D . ~4.9!
on
at

x

ent
n:

ther
res-
e

es in

tors
Herey coincides with thex variable atv50,

y5212
d2Kq'

4

2B
.

The layer displacement fluctuations and correlation functi
may be expressed through the elements of the inverse m
M̂ 21 @2#,

^un~r'!um~0!&5
kBT

~2p!2E dq'~M̂ 21!nmeiq'•r',

~4.10!

where the integration is performed within the limits 2p/L
,q',2p/a, where L is the transverse size of the film anda
is the molecular diameter.

The elements of the inverse matrixM̂ 21 may be found in
a similar way as it was done for theÂ21 matrix. Finally the
inverse matrix elements (M̂ 21)nm are given by Eq.~4.5! with
v50, i.e., with the replacementx by y in Eq. ~4.5!. Thus we
have

M̂ 215x̂~v50!.

The elements (M̂ 21)nm were obtained earlier in another form
@2,7#. In the limit q'→0 all elements of the inverse matri
M̂ 21 are identical:

~M̂ 21!nm'
1

2gq'
2

.

03170
s
rix

Now we consider the time-dependent layer displacem
correlation functions. They may be found from the relatio

^un~q' ,t !um~2q' ,0!&5
ikBT

2p E
2`

` dv

v
@xmn* ~q' ,v!

2xnm~q' ,v!#e2 ivt, ~4.11!

where the matrix elementsxnm(q' ,v) are given by Eq.
~4.5!. The integration in Eq.~4.11! is a rather complicated
procedure and therefore we perform the calculations ano
way. For this purpose we diagonalize the free-energy exp
sion Eq.~4.8! by transition to the normal coordinates. Th
eigenvaluesl ( l ) and eigenvectorsu( l ) of the M̂ matrix are
calculated as well as the eigenfrequencies and eigenmod
Sec. II. The nonzero solution condition of the equation

~M̂2l Î !u50

leads to the same characteristic equation~2.10!. The eigen-
values of theM̂ matrix are expressed through the rootsx( l ),
l 51,2, . . . ,N of this characteristic equation

l ( l )5
2B

d
~11x( l )!1Kdq'

4 , l 51,2, . . . ,N. ~4.12!

The eigenvectors componentsun
( l ) are given by Eq.~2.16!. It

should be noted that all eigenvaluesl ( l ) are positive. The
N-dimensional vector of the layer displacementsu(q') may
be expanded over the system of the normalized eigenvec
v( l )(q')5@u( l )(q')#/iu( l )(q')i , where

iu( l )~q'!i5A(
n51

N

@un
( l )~q'!#2.
6-8
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Thus we have

un~q' ,t !5(
l 51

N

A( l )~q' ,t !vn
( l )~q'!, n51,2, . . . ,N,

where the functionsA( l )(q' ,t), l 51,2, . . . ,N are the nor-
mal coordinates of the vectoru(q' ,t). The diagonalized ex-
pression for the free energy has the form

F5 1
2 E dq'

~2p!2 (
l 51

N

l ( l )uA( l )~q' ,t !u2. ~4.13!

Going over to the normal coordinates in the layer d
placement correlation functions we have

^un~q' ,t !um~2q' ,0!&

5 (
l ,p51

N

^A( l )~q' ,t !A(p)~2q',0!&vn
( l )~q'!vm

(p)~2q'!.

~4.14!

All modes evaluate in time independently with eigenfr
quencies obtained in Sec. II. Hence we get

^A( l )~q' ,t !A(p)~2q',0!&

5^A1
( l )~q',0!A(p)~2q',0!&

3e2 iv1
( l )t1^A2

( l )~q',0!A(p)~2q',0!&e2 iv2
( l )t.

~4.15!

The equilibrium correlation functions, entering the righ
hand side of Eq.~4.15!, may be found~Ref. @8#! using the
equipartition theorem

^A( l )~q',0!A(p)~2q',0!&5
kBT

l ( l )
d lp , l ,p51,2, . . . ,N,

~4.16!

and the condition of the statistical independence of the qu
tities A(p)(2q',0) and@„]A( l )/]t(q' ,t)…# t50:

K S ]A( l )

]t
~q' ,t ! D

t50

A(p)~2q',0!L 50, l ,p51,2, . . . ,N.

~4.17!

Thus, we have

^A6
( l )~q',0!A(p)~2q',0!&5

v7
( l )kBT

l ( l )~v7
( l )2v6

( l )!
d lp ,

l ,p51,2, . . . ,N. ~4.18!

Substituting Eqs.~4.15! and~4.18! into Eq.~4.14! we get the
expression for the time-dependent layer displacement co
lation functions
03170
-

-

n-

e-

^un~q' ,t !um~2q' ,0!&

5(
l 51

N
kBT

l ( l )~v2
( l )2v1

( l )!
~v2

( l )e2 iv1
( l )t

2v1
( l )e2 iv2

( l )t!vn
( l )~q'!vm

( l )~2q'!, n,m51,2, . . . ,N.

~4.19!

Here the eigenvaluesl ( l ) and the eigenfrequenciesv6
( l ) are

given by Eqs.~4.12! and ~2.11!.
A displacement–displacement correlation function in t

(r' ,t) representation is calculated from the Fourier tra
form

^un~r' ,t !um~0,0!&

5
1

~2p!2E dq'^un~q' ,t !um~2q' ,0!&eiq'•r'.

~4.20!

The integration is performed within the same limi
as in Eq. ~4.10!. Since the correlation function
^un(q' ,t)um(2q' ,0)& is independent of the wave vecto
q' direction we may perform the integration over the ang
betweenr' andq' . Thus we have

^un~r' ,t !um~0,0!&5
1

2pE dq'q'J0~q'r'!

3^un~q' ,t !um~2q' ,0!&,

~4.21!

whereJ0 is the zeroth-order Bessel function. The integrati
in Eq. ~4.21! represents a rather simple numerical procedu

V. DISCUSSION

In conclusion we analyze the layer displacement corre
tion functions. All eigenmodes of the free standing SmA
films are oscillations for the small wave numbers defined
the condition Eq.~3.8!. These modes manifest themselves
peaks in the frequency spectra. The spectrum density of
third layer displacement fluctuations@u3(q')u3(2q')#v in
the free-standing six layer film is shown in Fig. 5. The c
culations were performed by Eq.~4.7!. The sharp peak arise
due to the acoustic mode. The peak position is determine
the relationvmax'c(1)q' , where the velocityc(1) is defined
by Eq.~3.10!. The width and location of this peak allows on
to estimate the viscosity coefficienth3 and the surface ten
sion g. Figure 6 shows the peak transformation with t
increasing of the wave number. When the acoustic vibrati
transform into relaxation process the frequency spectr
turns into Lorenzian. It should be noted that for small wa
numbers, q'!AB/gd, and low frequencies, v
!2/dAB/r sin(p/N), the forms of spectrum densities are th
same for all layer displacement correlation functions.

At high frequencies there areN21 peaks, arising due to
the optical oscillations, Eq.~3.9!. The heights of these peak
6-9
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are much less than the first one. The optical oscillations m
exist if the wave numbers obey the inequality

q'
2 ,

4ABr

h3d
.

Using the typical Sm-A parameters we getq',2.5
3105 cm21. The modes with these wave numbers are st
ied in light scattering experiments. According to Eq.~3.9!
the characteristic frequencies of the optical modes
v/2p;23109 Hz. These frequencies correspond to t
Mandel’shtam–Brillouin doublet produced by sound mod
in condensed matters. The main difficulty connected w
detecting this doublet in Sm-A films is in the smallness of the
oscillating peaks compared to the central Lorenzian re
ation contour. As the wave numberq' increases the oscillat
ing regime of the optical modes is replaced by the relaxa
one. For the wave numbers determined by Eq.~3.13! the

FIG. 5. The frequency dependence of spectral density of la
displacement fluctuations@u3(q')u3(2q')#v for q'5103 cm21.

FIG. 6. Transformation of spectral density@u3(q')u3(2q')#v

with increasing wave number.~1!, q'533103 cm21; ~2!, q'55
3103 cm21; ~3!, q'573103 cm21.
03170
y

-

re

s
h

-

n

inequality t1
(1)@t1

( l ) , l 52,3, . . . ,N is valid, i.e., the relax-
ation time t1

(1) determined by the surface tension is mu
more than the remaining relaxation times.

On further increasing of the wave number,q'@AB/gd,
the relaxation times of various modes approach each ot
In this region all eigenmodes pay the significant contribut
to the time-dependent layer displacement correlation fu
tions. Therefore the spectrum densities for various layers
ficiently differ from each other. These frequency depend
cies are shown in Fig. 7. It is obvious that the spectr
densities have the maximal value for the inner layers. For
layers close to the film surface the spectrum densities
crease. This is connected with the decrease of the sur
tension influence on the inner layer motion.
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FIG. 7. Frequency dependence of spectral den
@un(q')um(2q')#v for wave number q'533106 cm21. ~a!
Layer fluctuations:~1! n5m51; ~2! n5m52; and~3! n5m53.
~b! Layer displacement–layer displacement correlation functi
for n53: ~1! m51; ~2! m52; ~3! m53; ~4! m54; ~5! m55; and
~6! m56.
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